393 research outputs found

    On the thermodynamics of classical micro-canonical systems

    Full text link
    We study the configurational probability distribution of a mono-atomic gas with a finite number of particles N in the micro-canonical ensemble. We give two arguments why the thermodynamic entropy of the configurational subsystem involves Renyi's entropy function rather than that of Tsallis. The first argument is that the temperature of the configurational subsystem is equal to that of the kinetic subsystem. The second argument is that the instability of the pendulum, which occurs for energies close to the rotation threshold, is correctly reproduced

    End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss

    Full text link
    Cross-modality retrieval encompasses retrieval tasks where the fetched items are of a different type than the search query, e.g., retrieving pictures relevant to a given text query. The state-of-the-art approach to cross-modality retrieval relies on learning a joint embedding space of the two modalities, where items from either modality are retrieved using nearest-neighbor search. In this work, we introduce a neural network layer based on Canonical Correlation Analysis (CCA) that learns better embedding spaces by analytically computing projections that maximize correlation. In contrast to previous approaches, the CCA Layer (CCAL) allows us to combine existing objectives for embedding space learning, such as pairwise ranking losses, with the optimal projections of CCA. We show the effectiveness of our approach for cross-modality retrieval on three different scenarios (text-to-image, audio-sheet-music and zero-shot retrieval), surpassing both Deep CCA and a multi-view network using freely learned projections optimized by a pairwise ranking loss, especially when little training data is available (the code for all three methods is released at: https://github.com/CPJKU/cca_layer).Comment: Preliminary version of a paper published in the International Journal of Multimedia Information Retrieva

    EfficientLEAF: A Faster LEarnable Audio Frontend of Questionable Use

    Full text link
    In audio classification, differentiable auditory filterbanks with few parameters cover the middle ground between hard-coded spectrograms and raw audio. LEAF (arXiv:2101.08596), a Gabor-based filterbank combined with Per-Channel Energy Normalization (PCEN), has shown promising results, but is computationally expensive. With inhomogeneous convolution kernel sizes and strides, and by replacing PCEN with better parallelizable operations, we can reach similar results more efficiently. In experiments on six audio classification tasks, our frontend matches the accuracy of LEAF at 3% of the cost, but both fail to consistently outperform a fixed mel filterbank. The quest for learnable audio frontends is not solved.Comment: Accepted at EUSIPCO 2022. Code at https://github.com/CPJKU/EfficientLEA

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011

    Get PDF
    Valverde C, Livny J, SchlĂĽter J-P, Reinkensmeier J, Becker A, Parisi G. Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics. 2008;9(1): 416.Background: Small non-coding RNAs (sRNAs) have emerged as ubiquitous regulatory elements in bacteria and other life domains. However, few sRNAs have been identified outside several well-studied species of gamma-proteobacteria and thus relatively little is known about the role of RNA-mediated regulation in most other bacterial genera. Here we have conducted a computational prediction of putative sRNA genes in intergenic regions (IgRs) of the symbiotic alpha-proteobacterium S. meliloti 1021 and experimentally confirmed the expression of dozens of these candidate loci in the closely related strain S. meliloti 2011. Results: Our first sRNA candidate compilation was based mainly on the output of the sRNAPredictHT algorithm. A thorough manual sequence analysis of the curated list rendered an initial set of 18 IgRs of interest, from which 14 candidates were detected in strain 2011 by Northern blot and/or microarray analysis. Interestingly, the intracellular transcript levels varied in response to various stress conditions. We developed an alternative computational method to more sensitively predict sRNA-encoding genes and score these predicted genes based on several features to allow identification of the strongest candidates. With this novel strategy, we predicted 60 chromosomal independent transcriptional units that, according to our annotation, represent strong candidates for sRNA-encoding genes, including most of the sRNAs experimentally verified in this work and in two other contemporary studies. Additionally, we predicted numerous candidate sRNA genes encoded in megaplasmids pSymA and pSymB. A significant proportion of the chromosomal- and megaplasmid- borne putative sRNA genes were validated by microarray analysis in strain 2011. Conclusion: Our data extend the number of experimentally detected S. meliloti sRNAs and significantly expand the list of putative sRNA-encoding IgRs in this and closely related alpha-proteobacteria. In addition, we have developed a computational method that proved useful to predict sRNA-encoding genes in S. meliloti. We anticipate that this predictive approach can be flexibly implemented in many other bacterial species

    A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications

    Get PDF
    In this work, we propose a new non-standard finite-difference-method for the numerical solution of the time-continuous non-autonomous susceptible-infected-recovered model. For our time-discrete numerical solution algorithm, we prove preservation of non-negativity and show that the unique time-discrete solution converges linearly towards the time-continuous unique solution. In addition to that, we introduce a parameter identification algorithm for the susceptible-infected-recovered model. Finally, we provide two numerical examples to stress our theoretical findings
    • …
    corecore